BRAINAE SCHOOL OF BUSINESS, SCIENCES, AND TECHNOLOGY

http://www.brainae.org

Email: info@brainae.org +250 788 756 089

SCHOOL: SCIENCE AND TECHNLOGY

MODULE: MATHEMATICAL LOGIC

BY: Mr. ISHIMWE Fabrice

Notes on mathematical logic ISHIMWE Fabrice

May 2022

Mathematical Logic

- Propositional Logic (Today)
- Basic logical connectives.
- Truth tables.
- Logical equivalences.
- First-Order Logic
- Reasoning about properties of multiple objects.

Propositional Logic

A **proposition** is a statement that is, by itself, either true or false.

Propositional Logic

- Propositional logic is a mathematical system for reasoning about propositions and how they relate to one another.
- Propositional logic enables us to
- Formally encode how the truth of various propositions influences the truth of other propositions.
- Determine if certain combinations of propositions are always, sometimes, or never true.
- Determine whether certain combinations of propositions logically entail other combinations.

Variables and Connectives

- Propositional logic is a formal mathematical system whose syntax is rigidly specified.
- Every statement in propositional logic consists of propositional variables combined via logical connectives.
- Each variable represents some proposition, such as "You wanted it" or "You should have put a ring on it."
- Connectives encode how propositions are related, such as "If you wanted it, you should have put a ring on it."

Propositional Variables

- Each proposition will be represented by a propositional variable.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
- If we need more, we can use subscripts: p_1 , p_2 , etc.
- Each variable can take one one of two values: true or false.

Logical Connectives

• Logical NOT: ¬p

- Read "not p"
- $\neg p$ is true if and only if p is false.
- Also called logical negation.

• Logical AND: $p \land q$

- Read "p and q."
- $p \land q$ is true if both p and q are true.
- Also called logical conjunction.

Logical OR: p V q

- Read "p or q."
- p ∨ q is true if at least one of p or q are true (inclusive OR) Also called logical disjunction.

Truth Tables

p	q	p / q
F	F	F
F	Т	F
Т	F	F
Т	Т	T
p	q	p Vq

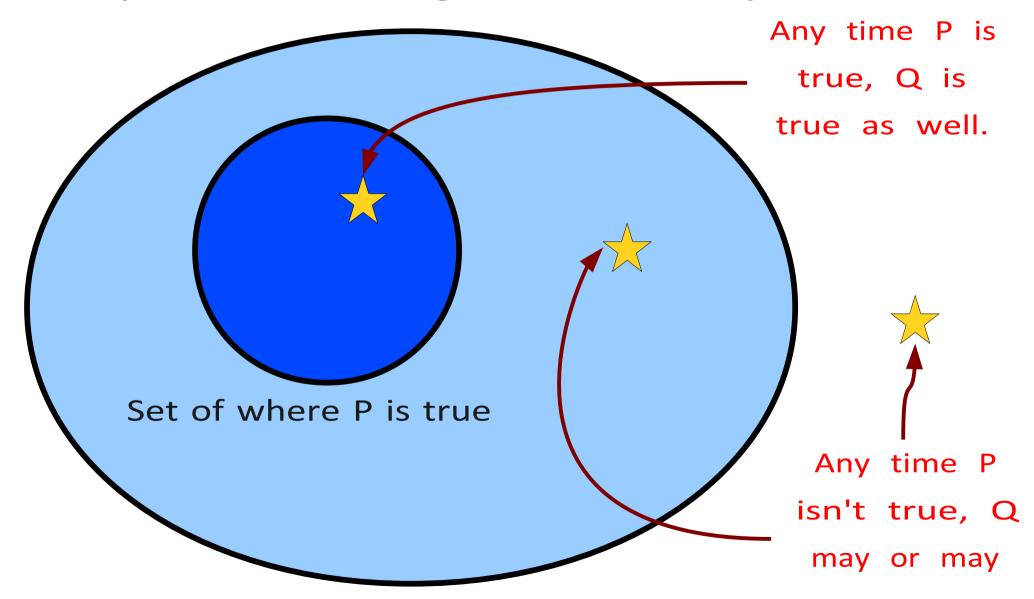
Truth Tables

F	F	F
F	Т	T
Т	F	T
Т	Т	T
	'	$p \neg p F$
		TTF

Implication

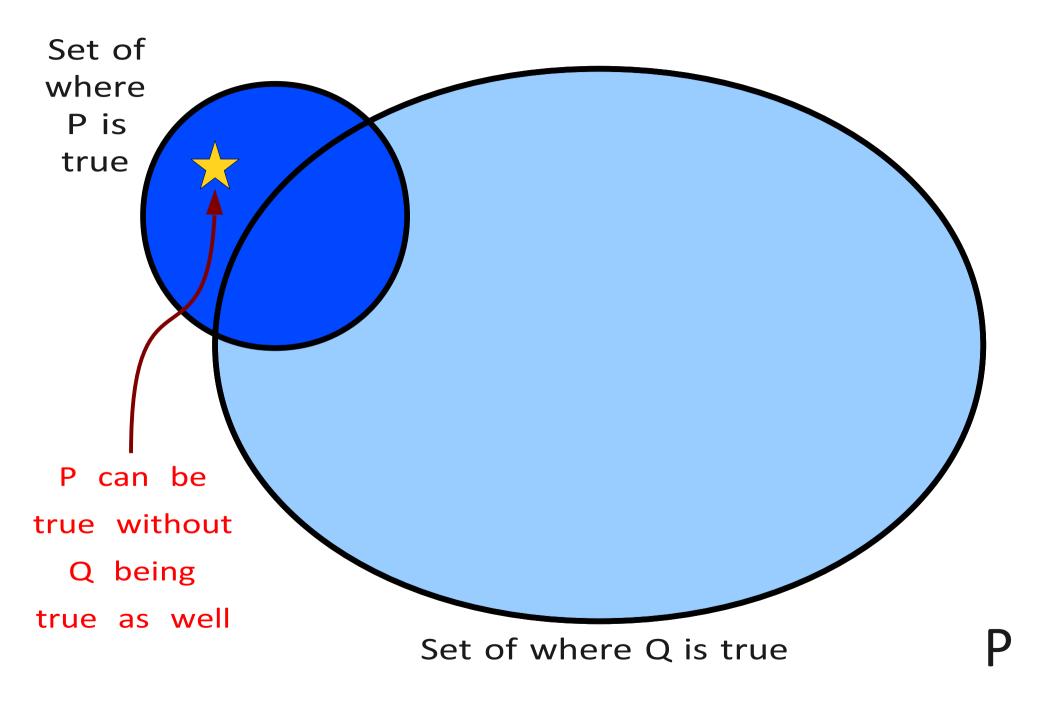
- An important connective is logical implication: $p \rightarrow q$.
- Recall: $p \rightarrow q$ means "if p is true, q is true as well."
- Recall: $p \rightarrow q$ says **nothing** about what happens if p is false.
- Recall: $p \rightarrow q$ says **nothing** about causality; it just says that if p is true, q will be true as well.

Implication, Diagrammatically



When p Does Not Imply q

- $p \rightarrow q$ means "if p is true, q is true as well."
- Recall: The **only way** for $p \rightarrow q$ to be false is if we know that p is true but q is false.
- Rationale:
- If p is false, $p \rightarrow q$ doesn't guarantee anything. It's true, but it's not **meaningful**.
- If *p* is true and *q* is true, then the statement "if *p* is true, then *q* is also true" is itself true.
- If p is true and q is false, then the statement "if p is true, q is also true" is false.



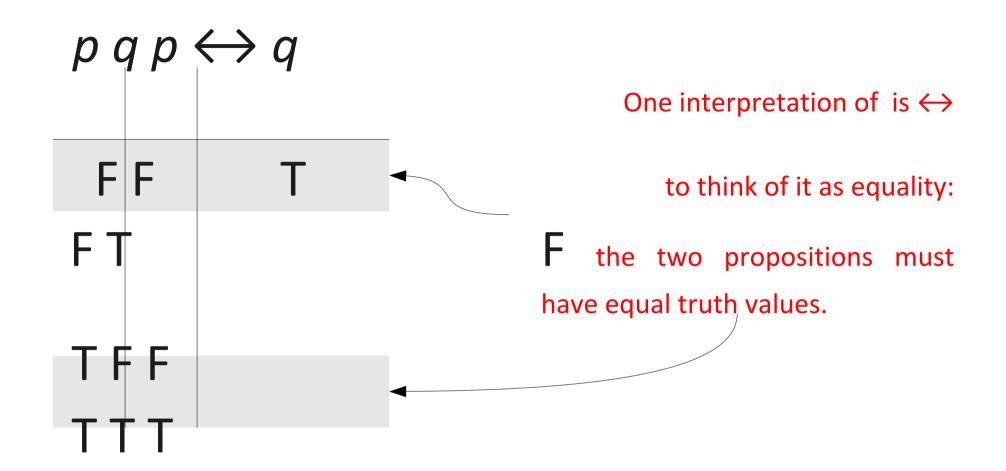
 \rightarrow Q is false

Truth Table for Implication

p	q	$p \rightarrow q$
F	F	T
F	T	T
Т	F	F
Т	T	T

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read "p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.



True and False

- There are two more "connectives" to speak of: true and false.
- The symbol T is a value that is always true.
- The symbol \bot is value that is always false.
- These are often called connectives, though they don't connect anything.
- (Or rather, they connect zero things.)

Operator Precedence

How do we parse this statement?

$$(\neg x) \rightarrow ((y \lor z) \rightarrow (x \lor (y \land z)))$$

Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Recap So Far

- A propositional variable is a variable that is either true or false.
- The logical connectives are
- Negation: $\neg p$
- Conjunction: $p \land q$
- Disjunction: *p* V *q*
- Implication: $p \rightarrow q$
- Biconditional: $p \leftrightarrow q$
- True: T
- False: ⊥

Translating into Propositional Logic

Some Sample Propositions

a: There is a velociraptor outside my apartment. b: Velociraptors can open windows. c: I am in my apartment right now.d: My apartment has windows.

e: I am going to be eaten by a velociraptor

I won't be eaten by a velociraptor if there isn't a velociraptor outside my apartment.

$$\neg a \rightarrow \neg e$$

"p if q"

translates to $q \rightarrow p$

It does **not** translate to $p \rightarrow q$

a: There is a velociraptor outside my apartment. b: Velociraptors can open windows. c: I am in my apartment right now.
d: My apartment has windows.

Some Sample Propositions

e: I am going to be eaten by a velociraptor If there is a velociraptor outside my apartment, but it can't open windows, I am

not going to be eaten by a velociraptor. $a \land \neg b \Rightarrow$

 $\neg e$

"p, but q"

translates to $p \land q$

a: There is a velociraptor outside my apartment. b:
Velociraptors can open windows. c: I am in my
apartment right now. d: My apartment has windows.
e: I am going to be eaten by a velociraptor

I am only in my apartment when there are no velociraptors outside.

Some Sample Propositions

$$c \rightarrow \neg a$$

"p only when q"

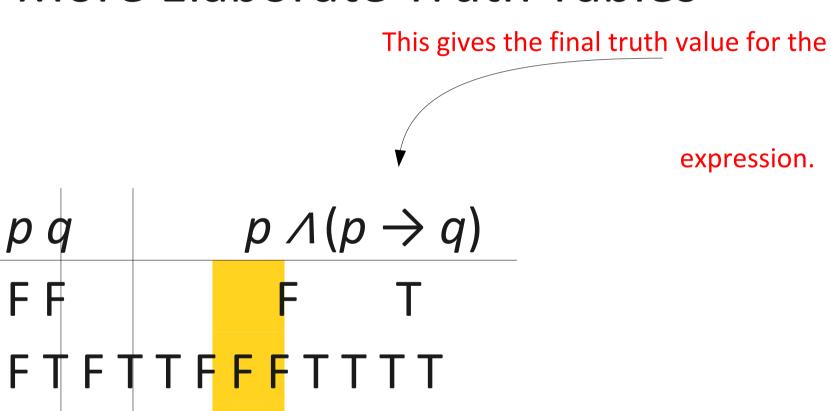
translates to $p \rightarrow q$

The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
- In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositions lead to counterintuitive translations; make sure to double-check yourself!

Logical Equivalence

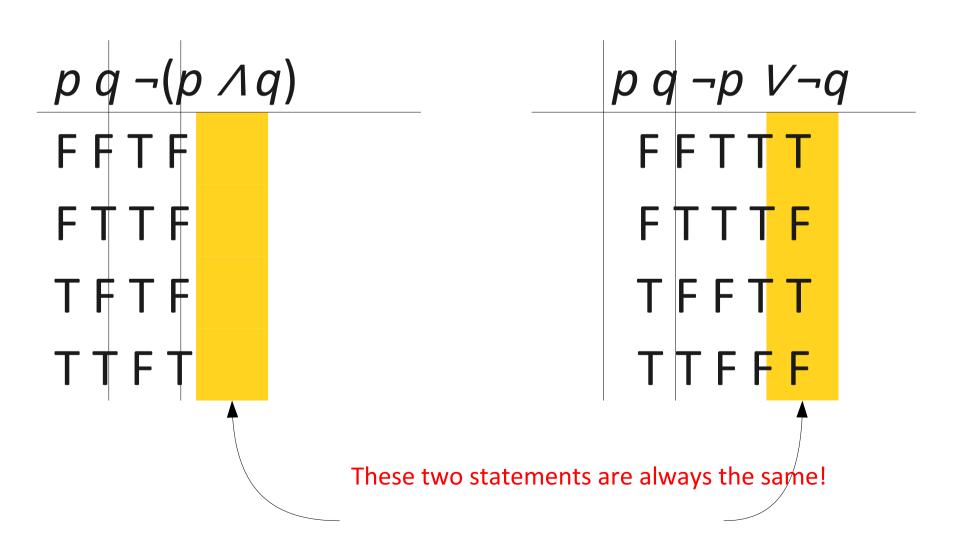
More Elaborate Truth Tables



Negations

- $p \land q$ is false if and only if $\neg(p \land q)$ is true.
- Intuitively, this is only possible if either p is false or q is false (or both!)
- In propositional logic, we can write this as $\neg p \lor \neg q$.
- How would we prove that $\neg(p \land q)$ and $\neg p \lor \neg q$ are equivalent?
- Idea: Build truth tables for both expressions and confirm that they always agree.

Negating AND



Logical Equivalence

- If two propositional logic statements ϕ and ψ always have the same truth values as one another, they are called **logically equivalent**.
- We denote this by $\phi \equiv \psi$.
- ■ is **not** a connective. Connectives are a part of logic statements;
 ■ is something used to describe logic statements.
- It is part of the metalanguage rather than the language.
- If $\phi \equiv \psi$, we can modify any propositional logic formula containing ϕ by replacing it with ψ .
- This is not true when we talk about first-order logic; we'll see why later.

De Morgan's Laws

Using truth tables, we concluded that

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

We can also use truth tables to show that

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

 These two equivalences are called De Morgan's Laws.

More Negations

- When is $p \rightarrow q$ false?
- Answer: p must be true and q must be false.
- In propositional logic: $p \land \neg q$ •Is the following true?

$$\neg(p \rightarrow q) \equiv p \land \neg q$$

Negating Implications

$p q \neg (p \rightarrow q)$					$pqp\Lambda \neg q$				
FT F								FF TT	
TF T					Т				
F	Т	F			F				
Т	F	Т		Т	Т	T	F		

$$\neg(p \rightarrow q) \equiv p \land \neg q$$

An Important Observation

We have just proven that

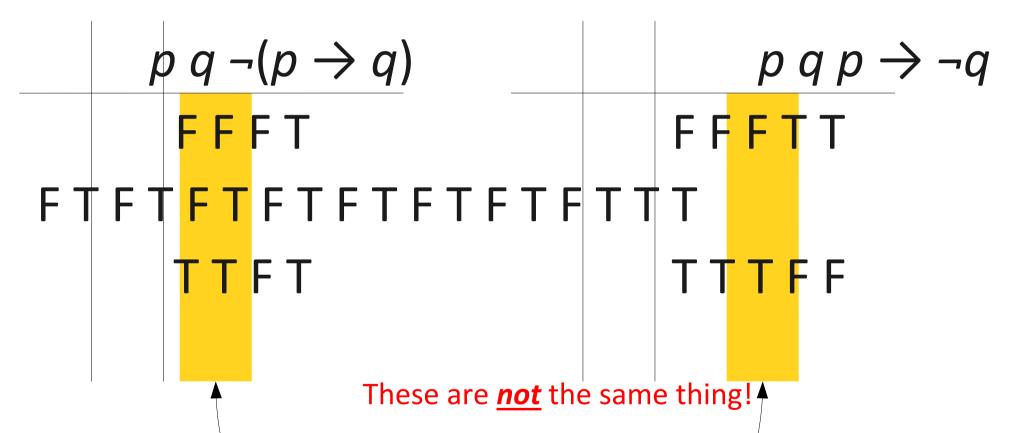
$$\neg(p \rightarrow q) \equiv p \land \neg q$$

- If we negate both sides, we get that $p \to q \equiv \neg(p \land \neg q)$ By De Morgan's laws: $p \to q \equiv \neg(p \land \neg q) \ p \to q \equiv \neg p \lor \neg \neg q \ p$ $\to q \equiv \neg p \lor q$
- Thus $p \rightarrow q \equiv \neg p \lor q$

Another Idea

- We've just shown that $\neg(p \rightarrow q) \equiv p \land \neg q$.
- Is it also true that $\neg(p \rightarrow q) \equiv p \rightarrow \neg q$?
- Let's go check!

$$\neg(p \rightarrow q)$$
 and $p \rightarrow \neg q$



To prove that $p \to q$ is false, do **not** prove $p \to \neg q$.

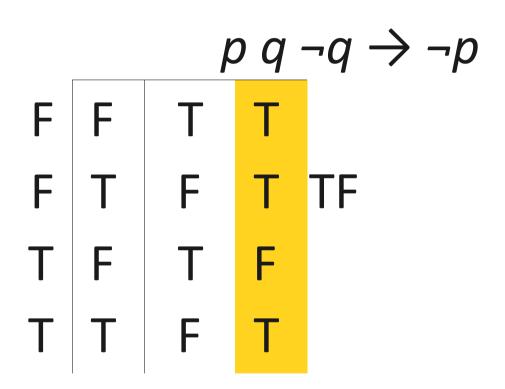
Instead, prove that $p \land \neg q$ is true.

Analyzing Proof Techniques Proof by Contrapositive

- Recall that to prove that $p \to q$, we can also show that $\neg q \to \neg p$.
- Let's verify that $p \rightarrow q \equiv \neg q \rightarrow \neg p$.

The Contrapositive

$p q p \rightarrow q$								
FT	F		Т					
FT	Т		Т					
	F		F					
	Т		Т					



TF
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

Why All This Matters

Suppose we want to prove the following statement:

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ " $x < 8 \land y < 8 \rightarrow$

$$x + y \neq 16$$

"If x < 8 and y < 8, then $x + y \ne 16$ " Theorem: If $x + y \ne 16$, then either $x \ge 8$ or $y \ge 8$.

Proof: By contrapositive. We prove that if x < 8 and y < 8, then $x + y \ne 16$. To see this, note that

$$x + y < 8 + y$$

 $< 8 + 8$
 $= 16$

So x + y < 16, so x + y ≠ 16.

Why This Matters

- Propositional logic is a tool for reasoning about how various statements affect one another.
- To better understand how to prove a result, it often helps to translate what you're trying to prove into propositional logic first.
- Note: To truly reason about proofs, we need the more expressive power of first-order logic, which we'll talk about next time.

Proof by Contradiction

- The general structure of a proof by contradiction is
- To show p, assume p is false.
- Show that p being false implies something that cannot be true.
- Conclude, therefore, that p is true.
- What does this look like in propositional logic?

$$(\neg p \rightarrow \bot) \rightarrow p$$

Proof by Contradiction

$$\begin{array}{c} p \ (\neg p \rightarrow \bot) \rightarrow p \\ \hline \\ F \ T \ F \ T \ F \ T \ T \\ \hline \end{array}$$
This statement is always true!

Tautologies

- A tautology is a statement that is always true.
- Examples:
- $p \lor \neg p$ (the Law of the Excluded Middle)
- $\bot \rightarrow p$ (vacuous truth)
- Once a tautology has been proven, we can use that tautology anywhere.

First-Order Logic

 How do we reason about multiple objects and their properties?